On well-posedness for the Benjamin–Ono equation
نویسندگان
چکیده
منابع مشابه
The Well-posedness Ofthe Kuramoto-sivashinsky Equation
The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are modeling reaction-diffusion systems, flame-propagation and viscous flow problems. It is considered here, as a prototype to the larger class of generalized Burgers equations: those consist of quadratic nonlinearity and arbitrary linear parabolic part. We show that such equations are well-posed, thus admitting ...
متن کاملOn the Well-posedness of the Degasperis-procesi Equation
We investigate well-posedness in classes of discontinuous functions for the nonlinear and third order dispersive Degasperis-Procesi equation (DP) ∂tu− ∂ txxu + 4u∂xu = 3∂xu∂ xxu + u∂ xxxu. This equation can be regarded as a model for shallow-water dynamics and its asymptotic accuracy is the same as for the Camassa-Holm equation (one order more accurate than the KdV equation). We prove existence...
متن کاملRemark on Well-posedness and Ill-posedness for the Kdv Equation
We consider the Cauchy problem for the KdV equation with low regularity initial data given in the space Hs,a(R), which is defined by the norm ‖φ‖Hs,a = ‖〈ξ〉s−a|ξ|a b φ‖L2 ξ . We obtain the local well-posedness in Hs,a with s ≥ max{−3/4,−a − 3/2}, −3/2 < a ≤ 0 and (s, a) 6= (−3/4,−3/4). The proof is based on Kishimoto’s work [12] which proved the sharp well-posedness in the Sobolev space H−3/4(R...
متن کاملWell-posedness for the 2d Modified Zakharov-kuznetsov Equation
We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.
متن کاملSharp Local Well-posedness Results for the Nonlinear Wave Equation
This article is concerned with local well-posedness of the Cauchy problem for second order quasilinear hyperbolic equations with rough initial data. The new results obtained here are sharp in low dimension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2007
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-007-0150-y